Digital repository
Maestría en Ciencias de Datos
Permanent URI for this community
Browse
Browsing Maestría en Ciencias de Datos by Subject "Internet de las Cosas"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Modelo predictivo de ciberataques en entornos de internet de las cosas(Quevedo: UTEQ, 2024) German Nelson, Arias Chevez; Emilio Rodrigo, Zhuma MeraLa Ciencia de Datos permite, en entornos de Internet de las Cosas, detectar y prevenir ciberataques utilizando el poder de las técnicas de aprendizaje automático para encontrar de forma autónoma las mejores soluciones para resolver los problemas que afrontan los dispositivos frente a los ciberataques y vulnerabilidades que poseen. El conjunto de datos CICIOT2023 contiene registros de los distintos tipos de ciberataques dirigidos a dispositivos de Internet de las Cosas. El objetivo de la presente investigación es generar un modelo predictivo aplicando técnicas de aprendizaje automático para detectar ciberataques en entornos de Internet de las Cosas utilizando el conjunto de datos de CICIOT2023, en este trabajo se destaca la importancia que tienen los modelos de predicción para proteger los entornos de Internet de las Cosas y reducir vulnerabilidades mediante el uso de técnicas de aprendizaje automático y minería de datos. Se aplican algoritmos de clasificación, regresión de aprendizaje automático y técnicas de minería de datos con conjuntos de datos de entrenamiento y pruebas, para llevar a cabo el modelado predictivo de una variedad de ciberataques. Estos ataques se categorizan en siete familias: Distributed Denial of Service (DDoS), Denial-of-Service (DoS), Reconocimiento, ataques basados en la web, Fuerza Bruta, Spoofing y Mirai. Además, se pretenda utilizar algoritmos de visualización de datos para identificar patrones que influyan en la seguridad de los protocolos frente a los ciberataques. Los resultados de la investigación muestran la importancia de un modelo predictivo para mantener la seguridad de los dispositivos de IoT frente a las actividades de los ciberdelincuentes, y de esta manera proteger y reducir vulnerabilidades en entornos de Internet de las Cosas. El proyecto de investigación desarrollado puede resultar de gran utilidad para aquellas empresas especializadas en ciberseguridad.